37 research outputs found

    Scoping Review-The Association between Asthma and Environmental Chemicals

    Get PDF
    Asthma is one of the most common chronic diseases worldwide affecting all age groups from children to the elderly. In addition to other factors such as smoking, air pollution and atopy, some environmental chemicals are shown or suspected to increase the risk of asthma, exacerbate asthma symptoms and cause other respiratory symptoms. In this scoping review, we report environmental chemicals, prioritized for investigation in the European Human Biomonitoring Initiative (HBM4EU), which are associated or possibly associated with asthma. The substance groups considered to cause asthma through specific sensitization include: diisocyanates, hexavalent chromium Cr(VI) and possibly p-phenylenediamine (p-PDA). In epidemiological studies, polyaromatic hydrocarbons (PAHs) and organophosphate insecticides are associated with asthma, and phthalates, per- and polyfluoroalkyl substances (PFASs), pyrethroid insecticides, mercury, cadmium, arsenic and lead are only potentially associated with asthma. As a conclusion, exposure to PAHs and some pesticides are associated with increased risk of asthma. Diisocyanates and Cr(VI) cause asthma with specific sensitization. For many environmental chemicals, current studies have provided contradicting results in relation to increased risk of asthma. Therefore, more research about exposure to environmental chemicals and risk of asthma is needed.Peer reviewe

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the Safe and Efficient Chemistry by Design (SafeChem) project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union's Horizon Europe Research and Innovation program

    Fish consumption patterns and hair mercury levels in children and their mothers in 17 EU countries

    Get PDF
    The toxicity of methylmercury (MeHg) in humans is well established and the main source of exposure is via the consumption of large marine fish and mammals. Of particular concern are the potential neurodevelopmental effects of early life exposure to low-levels of MeHg. Therefore, it is important that pregnant women, children and women of childbearing age are, as far as possible, protected from MeHg exposure.Within the European project DEMOCOPHES, we have analyzed mercury (Hg) in hair in 1799 mother–child pairs from 17 European countries using a strictly harmonized protocol for mercury analysis. Parallel, harmonized questionnaires on dietary habits provided information on consumption patterns of fish and marine products. After hierarchical cluster analysis of consumption habits of the mother–child pairs, the DEMOCOPHES cohort can be classified into two branches of approximately similar size: one with high fish consumption (H) and another with low consumption (L). All countries have representatives in both branches, but Belgium, Denmark, Spain, Portugal and Sweden have twice as many or more mother–child pairs in H than in L. For Switzerland, Czech Republic, Hungary, Poland, Romania, Slovenia and Slovakia the situation is the opposite, with more representatives in L than H.There is a strong correlation (r=0.72) in hair mercury concentration between the mother and child in the same family, which indicates that they have a similar exposure situation. The clustering of mother–child pairs on basis of their fish consumption revealed some interesting patterns. One is that for the same sea fish consumption, other food items of marine origin, like seafood products or shellfish, contribute significantly to the mercury levels in hair. We conclude that additional studies are needed to assess and quantify exposure to mercury from seafood products, in particular. The cluster analysis also showed that 95% of mothers who consume once per week fish only, and no other marine products, have mercury levels 0.55 µg/g. Thus, the 95th percentile of the distribution in this group is only around half the US-EPA recommended threshold of 1 µg/g mercury in hair. Consumption of freshwater fish played a minor role in contributing to mercury exposure in the studied cohort.The DEMOCOPHES data shows that there are significant differences in MeHg exposure across the EU and that exposure is highly correlated with consumption of fish and marine products. Fish and marine products are key components of a healthy human diet and are important both traditionally and culturally in many parts of Europe. Therefore, the communication of the potential risks of mercury exposure needs to be carefully balanced to take into account traditional and cultural values as well as the potential health benefits from fish consumption. European harmonized human biomonitoring programs provide an additional dimension to national HMB programs and can assist national authorities to tailor mitigation and adaptation strategies (dietary advice, risk communication, etc.) to their country’s specific requirements

    Harmonization of human biomonitoring studies in Europe: characteristics of the HBM4EU-aligned studies participants

    Get PDF
    Human biomonitoring has become a pivotal tool for supporting chemicals' policies. It provides information on real-life human exposures and is increasingly used to prioritize chemicals of health concern and to evaluate the success of chemical policies. Europe has launched the ambitious REACH program in 2007 to improve the protection of human health and the environment. In October 2020 the EU commission published its new chemicals strategy for sustainability towards a toxic-free environment. The European Parliament called upon the commission to collect human biomonitoring data to support chemical's risk assessment and risk management. This manuscript describes the organization of the first HBM4EU-aligned studies that obtain comparable human biomonitoring (HBM) data of European citizens to monitor their internal exposure to environmental chemicals. The HBM4EU-aligned studies build on existing HBM capacity in Europe by aligning national or regional HBM studies. The HBM4EU-aligned studies focus on three age groups: children, teenagers, and adults. The participants are recruited between 2014 and 2021 in 11 to 12 primary sampling units that are geographically distributed across Europe. Urine samples are collected in all age groups, and blood samples are collected in children and teenagers. Auxiliary information on socio-demographics, lifestyle, health status, environment, and diet is collected using questionnaires. In total, biological samples from 3137 children aged 6-12 years are collected for the analysis of biomarkers for phthalates, HEXAMOLL((R)) DINCH, and flame retardants. Samples from 2950 teenagers aged 12-18 years are collected for the analysis of biomarkers for phthalates, Hexamoll((R)) DINCH, and per- and polyfluoroalkyl substances (PFASs), and samples from 3522 adults aged 20-39 years are collected for the analysis of cadmium, bisphenols, and metabolites of polyaromatic hydrocarbons (PAHs). The children's group consists of 50.4% boys and 49.5% girls, of which 44.1% live in cities, 29.0% live in towns/suburbs, and 26.8% live in rural areas. The teenagers' group includes 50.6% girls and 49.4% boys, with 37.7% of residents in cities, 31.2% in towns/suburbs, and 30.2% in rural areas. The adult group consists of 52.6% women and 47.4% men, 71.9% live in cities, 14.2% in towns/suburbs, and only 13.4% live in rural areas. The study population approaches the characteristics of the general European population based on age-matched EUROSTAT EU-28, 2017 data; however, individuals who obtained no to lower educational level (ISCED 0-2) are underrepresented. The data on internal human exposure to priority chemicals from this unique cohort will provide a baseline for Europe's strategy towards a non-toxic environment and challenges and recommendations to improve the sampling frame for future EU-wide HBM surveys are discussed

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the 'Europe Regional Chapter of the International Society of Exposure Science' (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program.info:eu-repo/semantics/publishedVersio

    FAIR environmental and health registry (FAIREHR)- supporting the science to policy interface and life science research, development and innovation

    Get PDF
    Funding Information: Most co-authors were financialy supported with their respective inistitution. Some of the co-authors were financialy supportrd by the “Safe and Efficient Chemistry by Design (SafeChem)” project (grant no. DIA 2018/11) funded by the Swedish Foundation for Strategic Environmental Research, and by the PARC project (grant no. 101057014) funded under the European Union’s Horizon Europe Research and Innovation program. Publisher Copyright: Copyright © 2023 Zare Jeddi, Galea, Viegas, Fantke, Louro, Theunis, Govarts, Denys, Fillol, Rambaud, Kolossa-Gehring, Santonen, van der Voet, Ghosh, Costa, Teixeira, Verhagen, Duca, Van Nieuwenhuyse, Jones, Sams, Sepai, Tranfo, Bakker, Palmen, van Klaveren, Scheepers, Paini, Canova, von Goetz, Katsonouri, Karakitsios, Sarigiannis, Bessems, Machera, Harrad and Hopf.The environmental impact on health is an inevitable by-product of human activity. Environmental health sciences is a multidisciplinary field addressing complex issues on how people are exposed to hazardous chemicals that can potentially affect adversely the health of present and future generations. Exposure sciences and environmental epidemiology are becoming increasingly data-driven and their efficiency and effectiveness can significantly improve by implementing the FAIR (findable, accessible, interoperable, reusable) principles for scientific data management and stewardship. This will enable data integration, interoperability and (re)use while also facilitating the use of new and powerful analytical tools such as artificial intelligence and machine learning in the benefit of public health policy, and research, development and innovation (RDI). Early research planning is critical to ensuring data is FAIR at the outset. This entails a well-informed and planned strategy concerning the identification of appropriate data and metadata to be gathered, along with established procedures for their collection, documentation, and management. Furthermore, suitable approaches must be implemented to evaluate and ensure the quality of the data. Therefore, the ‘Europe Regional Chapter of the International Society of Exposure Science’ (ISES Europe) human biomonitoring working group (ISES Europe HBM WG) proposes the development of a FAIR Environment and health registry (FAIREHR) (hereafter FAIREHR). FAIR Environment and health registry offers preregistration of studies on exposure sciences and environmental epidemiology using HBM (as a starting point) across all areas of environmental and occupational health globally. The registry is proposed to receive a dedicated web-based interface, to be electronically searchable and to be available to all relevant data providers, users and stakeholders. Planned Human biomonitoring studies would ideally be registered before formal recruitment of study participants. The resulting FAIREHR would contain public records of metadata such as study design, data management, an audit trail of major changes to planned methods, details of when the study will be completed, and links to resulting publications and data repositories when provided by the authors. The FAIREHR would function as an integrated platform designed to cater to the needs of scientists, companies, publishers, and policymakers by providing user-friendly features. The implementation of FAIREHR is expected to yield significant benefits in terms of enabling more effective utilization of human biomonitoring (HBM) data.publishersversionpublishe

    First steps toward harmonized human biomonitoring in Europe : demonstration project to perform human biomonitoring on a European scale

    Get PDF
    'Reproduced with permission from Environmental Health Perspectives'Background: For Europe as a whole, data on internal exposure to environmental chemicals do not yet exist. Characterization of the internal individual chemical environment is expected to enhance understanding of the environmental threats to health. Objectives: We developed and applied a harmonized protocol to collect comparable human biomonitoring data all over Europe. Methods: In 17 European countries, we measured mercury in hair and cotinine, phthalate metabolites, and cadmium in urine of 1,844 children (5–11 years of age) and their mothers. Specimens were collected over a 5-month period in 2011–2012. We obtained information on personal characteristics, environment, and lifestyle. We used the resulting database to compare concentrations of exposure biomarkers within Europe, to identify determinants of exposure, and to compare exposure biomarkers with healthbased guidelines. Results: Biomarker concentrations showed a wide variability in the European population. However, levels in children and mothers were highly correlated. Most biomarker concentrations were below the health-based guidance values. Conclusions: We have taken the first steps to assess personal chemical exposures in Europe as a whole. Key success factors were the harmonized protocol development, intensive training and capacity building for field work, chemical analysis and communication, as well as stringent quality control programs for chemical and data analysis. Our project demonstrates the feasibility of a Europe-wide human biomonitoring framework to support the decision-making process of environmental measures to protect public health.The research leading to these results received funding for the COPHES project (COnsortium to Perform Human biomonitoring on a European Scale) from the European Community’s Seventh Framework Programme [FP7/2007–2013] under grant agreement 244237. DEMOCOPHES (DEMOnstration of a study to COordinate and Perform Human biomonitoring on a European Scale) was co-funded (50%:50%) by the European Commission LIFE+ Programme (LIFE09/ENV/BE/000410) and the partners. For information on both projects as well as on the national co-funding institutions, see http://www.eu-hbm.info/. The sponsors had no role in the study design, data collection, data analysis, data interpretation or writing of the report

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014-2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6-12 years, (ii) 3,117 teenagers aged 12-18 years and (iii) 4,102 young adults aged 20-39 years. The participants were recruited between 2014 and 2021 in 11-12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Sigma (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures

    Harmonized human biomonitoring in European children, teenagers and adults: EU-wide exposure data of 11 chemical substance groups from the HBM4EU Aligned Studies (2014–2021)

    Get PDF
    As one of the core elements of the European Human Biomonitoring Initiative (HBM4EU) a human biomonitoring (HBM) survey was conducted in 23 countries to generate EU-wide comparable HBM data. This survey has built on existing HBM capacity in Europe by aligning national or regional HBM studies, referred to as the HBM4EU Aligned Studies. The HBM4EU Aligned Studies included a total of 10,795 participants of three age groups: (i) 3,576 children aged 6–12 years, (ii) 3,117 teenagers aged 12–18 years and (iii) 4,102 young adults aged 20–39 years. The participants were recruited between 2014 and 2021 in 11–12 countries per age group, geographically distributed across Europe. Depending on the age group, internal exposure to phthalates and the substitute DINCH, halogenated and organophosphorus flame retardants, per- and polyfluoroalkyl substances (PFASs), cadmium, bisphenols, polycyclic aromatic hydrocarbons (PAHs), arsenic species, acrylamide, mycotoxins (deoxynivalenol (total DON)), benzophenones and selected pesticides was assessed by measuring substance specific biomarkers subjected to stringent quality control programs for chemical analysis. For substance groups analyzed in different age groups higher average exposure levels were observed in the youngest age group, i.e., phthalates/DINCH in children versus teenagers, acrylamide and pesticides in children versus adults, benzophenones in teenagers versus adults. Many biomarkers in teenagers and adults varied significantly according to educational attainment, with higher exposure levels of bisphenols, phthalates, benzophenones, PAHs and acrylamide in participants (from households) with lower educational attainment, while teenagers from households with higher educational attainment have higher exposure levels for PFASs and arsenic. In children, a social gradient was only observed for the non-specific pyrethroid metabolite 3-PBA and di-isodecyl phthalate (DiDP), with higher levels in children from households with higher educational attainment. Geographical variations were seen for all exposure biomarkers. For 15 biomarkers, the available health-based HBM guidance values were exceeded with highest exceedance rates for toxicologically relevant arsenic in teenagers (40%), 3-PBA in children (36%), and between 11 and 14% for total DON, Σ (PFOA + PFNA + PFHxS + PFOS), bisphenol S and cadmium. The infrastructure and harmonized approach succeeded in obtaining comparable European wide internal exposure data for a prioritized set of 11 chemical groups. These data serve as a reference for comparison at the global level, provide a baseline to compare the efficacy of the European Commission's chemical strategy for sustainability and will give leverage to national policy makers for the implementation of targeted measures
    corecore